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ABSTRACT

A simplified analytical model of a six-degree-of-freedom large-gap magnetic

suspension system is presented. The suspended element is a cylindrical permanent magnet

that is magnetized in a direction which is perpendicular to its axis of symmetry. The

actuators are air core electromagnets mounted in a planar array. The analytical model

consists of an open-loop representation of the magnetic suspension system with

electromagnet currents as inputs.

INTRODUCTION

This paper develops a simplified analytical model of a six-degree-of-freedom (6DOF)

Large-Gap Magnetic Suspension System (LGMSS). The LGMSS is a conceptual design

for a ground-based experiment which can be used to investigate the technology issues

associated with magnetic suspension at large gaps, such as accurate suspended element

control and accurate sensing (ref. 1). This technology is applicable to future efforts which

range from magnetic suspension of wind tannel models to advanced spacecraft experiment

isolation and pointing systems. The 6DOF model is an extension of the five degree of

freedom (5DOF) model developed in reference 2. The suspended element is a cylindrical

permanent magnet which is magnetized perpendicular to its axis of symmetry and the

actuators are air core electromagnets mounted in a planar array. The electromagnet array is

mounted horizontally with the suspended element levitated above the array by repulsive

forces. In the nominal suspended element orientation, the axis of symmetry is horizontal

also. The 5DOF model developed in reference 2 was used to investigate two LQR control

approaches for an LGMSS in reference 3. In reference 3, the simplifying assumption was

made that the change in field and field gradients with respect to suspended element

displacements was negligible. In reference 4 the analytical model developed in reference 2

was linearized and extended to include the change in fields and field gradients with respect

to suspended element displacements and the open-loop characteristics of the resulting

system were investigated. Reference 5 developed the expanded equations (up to second

order) for torque and force on a cylindrical permanent magnet core for two orientations of

the core magnetization vector. One orientation was parallel to the axis of symmetry of the

core and the other was perpendicular to this axis. In general, the higher order terms in the

expanded equations can be neglected. However, in the case where the magnetization vector

is perpendicular to the axis of symmetry, the expanded equations indicate that torque about

the magnetization vector can be produced by controlling a second-order gradient term



directly. This allows the core to be controlled in 6DOF. In this paper the 6DOF analytical

model is developed by following the approach detailed in references 2 and 4 using the

equations for a cylindrical permanent magnet core uniformly magnetized perpendicular to

its axis of symmetry which are developed in reference 5. The analytical model consists of

an open-loop representation of the magnetic suspension system with electromagnet currents

as inputs.
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system matrix (state-space representation)

radius of core, m

input matrix (state-space representation)

magnetic flux density vector, T

matrix of field gradients, T/m

total force vector on suspended element, N

magnetic force vector on suspended element, N

disturbance force vector on suspended element, N

gravitational force vector on suspended element, N

acceleration due to gravity (lg=9.8 l m/sec2), m/sec 2

suspension height (suspended element centroid to top plane of coils), m

coil current vector, A

moment of inertia about the principal axes of the suspended element, kg-m 2

constant representing magnitude of Bt, produced by I=_ in coil n

constant representing magnitude of Bij, produced by I=_ in coil n

constant representing magnitude of B0i)_, produced by I_ in coil n

k._/I,_, T/A

_i,/Im_, T/m/A

k0DJI=_, T/m2/A

length of suspended element,

magnetization vector, A/m

suspended-element mass, kg

total torque vector on suspended element, N-m

magnetic torque vector on suspended element, N-m

disturbance torque vector on suspended element, N-m
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[T=]
V

V

Wl

X

x, y, z

0

suspended-element rate to Euler rate transformation matrix for a 3, 2, 1

(z, y, x respectively) rotation sequence

inertial coordinate to suspended element coordinate vector transformation matrix

velocity vector, m/sec

permanent magnet core volume, m 3

weighting matrix (eq. (36))

modified weighting matrix (eq. (40))

state vector for linearized model

coordinates in orthogonal axis system, m

small increment

Euler orientation for 3, 2, 1 rotation sequence, tad

angular velocity vector, rad/sec

Subscripts
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electromagnet axes

number of coils in system

coil number

component along x, y, z axis respectively

partial derivative of i component in j direction

partial derivative of ij partial derivative in k direction

maximum value

equilibrium condition

Matrix Notation
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matrix

inverse of matrix

column vector
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transpose of row vector



Dotsover a symbol denote derivatives with respect to time; a bar over a symbol

indicates that it is referenced to suspended element coordinates.

ANALYTICAL MODEL

This section presents a simplified analytical model of a 6DOF LGMSS which is

developed by following the approach detailed in references 2 and 4 using the equations for

torques and forces on a cylindrical permanent magnet core uniformly magnetized

perpendicular to its axis of symmetry as developed in reference 5. The equations are

simplified by using small-angle assumptions and neglecting second-order terms involving

suspended-element motion. The permanent magnet core, or suspended element, is levitated

over a planar array of electromagnets. Figure 1 is a schematic representation of an eight coil

system that shows the coordinate systems and initial alignment. The suspended-element

coordinate system consists of a set of orthogonal i, 7, _ body-fLxed axes that define the

motion of the suspended element with respect to an orthogonal x, y, z system fixed in

inertial space. The suspended-element coordinate system is initially aligned with the x, y, z

system. A set of orthogonal xb-, Yb-' zb-axes' also fixed in inertial space, def'me the location

of the electromagnet array with respect to the x, y, z system. The x b- and yb-axes are

parallel to the x- and y-axes respectively, and the zb- and z-axes are aligned. The centers of

the two axis systems are separated by the distance h. The eight coil array consists of four

coils mounted in a circular arrangement in the center and four additional coils mounted

around the center array. The array in the center predominantly controls the gradients of the

fields and therefore the forces along the x-, y-, and z-axes and the outer array

predominantly controls the magnitudes of the fields and therefore the torques about the x-,

y-, and z-axes. The cylindrical permanent magnet core, as mentioned above, is magnetized

perpendicular to its axis of symmetry and initially the magnetization vector is aligned with

the positive z-axis. Therefore, control of the core involves independently controlling the x-

and y-components of the field and their gradients in the z direction. As shown in reference

4, independent control of B I and B= is not feasible with a single circular army of

electromagnets (it can also be shown that independent control of By and By, is not

feasible). Hence, two circular arrays with different location radii are employed.
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Equations of Motion

-.X."

From references 2 and 4, the angular acceleration of the suspended element _ in

suspended-element coordinates can be written as

_ = [l,]-lT (1)

E 000]where [Ic] = Iy is the moment of inertia about the principal axes of the suspended

0 I=

element and T denotes the total torque on the suspended element. A bar over a variable

indicates that it is referenced to suspended-element coordinates. The torque T can be

expanded as

T= T, + T--a (2)

where T--_denotes the control torque on the suspended element produced by the

electromagnets and T d denotes external disturbance torques. The angular rates of the

suspended element are obtained by integrating equation (1). The suspended-element Euler

rates can be written as

O=[TE] _ (3)

where [T_] is the suspended-element rate to Euler rate transformation matrix for a 3, 2, 1

(z, y, x) rotation sequence. By using small-angle and rate assumptions, equation (3)

reduces to

0 -_-_ (4)

where
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I]0= b, (5)

The translational acceleration of the suspended element V in suspended-element

coordinates can be written as

__(1..!_) _ (6)
m c

where m¢ is the mass of the suspended element and F denotes the total force on the

suspended element. The force F can be expanded as

F=F,+F d +Fg (7)

B

where F, denotes control force on the suspended element produced by the electromagnets,

F d denotes external disturbance forces, and F_ consists of the force acting on the

suspended element due to gravity, transformed into suspended-element coordinates. The

suspended-element translational rates are obtained by integrating equation (6). The

suspended-element translational rates V in inertial coordinates are given as

V = [T m]-'V (8)

where [T=] is the inertial coordinate to suspended-element coordinate vector-

transformation matrix. By using small-angle and rate assumptions, equation (8) reduces to

V - V (9)

where
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V = (10)

Magnetic Torques and Forces

From reference 5, the torque on a permanent magnet core which is magnetized

perpendicular to the axis of symmetry, in a given coordinate system, can be approximated

as

Tcx = -vMzBy (11)

Toy = vMzB_ (12)

£2 a 2
= )B_y)_ (13)T,_ vM_(-i- _ 4

where the terms that are a function of second-order gradients have been ignored for T,x and

"Icy. For simplicity define

e2 a2

c =(-i_ -_) (14)

Since B = [Tm] B, T= and "Icy in core coordinates can be written as (again using small-

angle assumptions)

T a = -vM_(BF - 0zB , + 0,B,) (15)

T_y = vM_(B_ + OzBy - 0yB z) (16)

Obtaining T,_ in core coordinates is more complicated. One method of obtaining T a is to

transform the expanded equation for B into core coordinates using equation (A16) in

reference 5. The gradients in core coordinates can then be calculated and substituted into
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equation(40) in reference5andtheintegraloverthevolumetaken.Followingthis

approach,Ta becomes

T a = vM_ (czB(m z + 0zc z(B(_)z - B(xy)y ) + 0yC z (B(xx)y - B(yz) z)

+ 0_c_(B(m _ - B(_)_))
(17)

From reference 5 the forces on a cylindrical permanent magnet core, for expansion of fields

up to second order, are a function of first-order gradients only. From reference 4, the

forces in a given coordinate system, as a function of fkst-order gradients, can be written as

Fc = v[o_B]M (18)

where

B_ B_ B,_ 1
[BB]= B_y Brj Br,

[.B,_ Br, B,,

(19)

The forces in core coordinates can be written as

Fc = V[Tm][O_][Tm] T_ (20)

For magnetization perpendicular to the axis of symmetry (along the _ axis) the forces

become

F¢_ = vM_(B_ - O_Bxy + Oy(B_ - B,,)+ O_Br_) (21)

F_y = vM_(Br_ + 0x(B,, - Byy)+ 0yBxy - 0_B_) (22)

F a = vM_(B. - 20_Br_ + 20yB.,) (23)



Disturbance Torques and Forces

The assumption is made that the only significant disturbances acting on the suspended

element is along the z - axis and is equal to its weight

(24)

where g is the acceleration of gravity. Other disturbance torques and forces are ignored. In

suspended-element coordinates

L = [TIn]F8 (25)

Performing the transformation (under smaU-angle assumptions) results in

Fa = 0ymcg (26)

Fgy = -0xmcg (27)

Fa = -meg (28)

Linearized Equations

The equations of motion are in the form

(29)

where
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xT =LD._ f_y _z 0 x OF 0 Z vx vy v_ x y zJ (30)

The torques and forces are functions of X and the coil currents I; thus,

"([I¢]IT)]

((_)F)I =
f(X, I) (31)

where

El1]Is
I = (32)

In

The equations can be linearized around the nominal operating point Xo, Io by

performing a Taylor series expansion. Neglecting second-order and higher terms and

subtracting out Xo results in

o_ = A6X + _ (33)

where

(34)

(35)

and
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Expanding A results in

A =WI

-o'_q"_/0f_ 0Tx/&'2y o"I'_/_ ... o,-r['_/_

o'_l"y/ 0t2_ o,'_'I"y/ o,_X"2y...

o,'_'I'_/ 3_ ...

oWz / Of_ ... oW Z / Oz

(37)

which reduces to
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(38)

Finally, by usingtheexpressionsfor torquesandforcesdevelopedearlier(eqns.(15)-(17),

(21)-(23),and(26)-(28)),fl becomes

0 0 0 -B, 0 B. 0 0 0-B_-B.'B z,

0 0 0 0 -Bz By 00 00 00 0B'_ B_0 B**0

000 c_(B(...)_ "Bc_y)y) cz(B('_)Y'Bcr*)_) c_(Bcrm'B(_')_)

100 0 0 0 000 0 0 00 0

0 00 0

0 0
010 0

001 0

._=W: 0 0 0 -B.

..,-. _ _ m_g) B,_ -B., 000 B(_), B(.)_B(r*)_
0 0 0 ttt)..-L'ryJ" vMt

0 00 -2By, 2B= 0 000 B(.-,), B(r,), B(..),

000 0 0 0 I00 0 0 0

000 0 0 0 010 0 0 0

000 0 0 0 001 0 0 0

(_E&. + (B,_- B=)) B,.,
vMz

000 0

000 0

0 0 0 B(=), B(.>. B(._), (39)

where
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W 2 =
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Next, expanding CBresults in

B=W 1

o,-rf_/tgI 1 d-rf_/tgI 2 ... aT_/cTl m"

ovry/a-I 1 o3Ty/o-tl 2 ...

o_/3I l ... (41)

Evaluating the first term in equation (41) at X o results in

o-ff_ / _l[x= -vM_d-tBy / d-I1 (42)

Since the fields and gradients are linear functions of coil currents, the components of By

produced by coil n of an m-coil system can be written as

By, = ky,(I_ / I_) (43)

where I_ is the maximum coil current, k_ is a constant that represents the magnitude of

Brn produced by I_, and In is the coil current. To simplify, define
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Ky n = kyJIma x (44)

For the total system, By call be written as

By = LKyJI (45)

where

Ky=LKy I Ky2 ... K_J (46)

and I is clef'meal by equation (32). Since the elements of LKyJ are constants

_y/_-L_:,j (47)

Similar results are obtained for the other fields and gradients. Terms in B related to the

identities 0x = f2_, by = f_, 0z = Dr, x = V_, _, = Vy, and _ = V_ are zero. Then B

becomes

I -LKyJ
LK,J

cz[K(_)z.
LoJ
LoJ

B =w_ LoJ
L_,,J

LK_J
LoJ
LOJ
LoJ

(48)
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Initial Conditions

Thesuspended element is assumed to be initially suspended in equilibrium at a distance

h above the electromagnet array with the suspended-element coordinates initially aligned

with the inertial coordinates as shown in figure 1. In equilibrium, F_ = Fy = 0 and

Fz = mog (49)

From equations (15)-(17) and (21)-(23), we have

B x = By = B_xy)z= B,. z = Br_ = 0 (50)

and

B,, = meg (51)
vM_

In equilibrium, by using the relationship of equation (51), elements (7, 5) and (8,4) of the

matrix in equation (39) reduce to

meg _-(B_ - B,. ) = B_x (52)
vM_

and

meg - -Byy (53)
(B= -Bry) vM_

From equation (45), the controlled fields and gradients as a function of Io can be written as
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"B_

By

B_

Byz

B.

.B(_)z

LK,J

LK,J

LK J
LK J I°

LK=J

(54)

Io can be found by inverting the K matrix in equation (54) using the generalized inverse.

This produces a solution where the 2-norm of the current vector is minimized (i.e.,

minimum _ 12 ). Once Io is determined, the uncontrolled fields and gradients required to

complete the._/matrix can be calculated.

As noted in references 3 and 4, one of the objectives of the LGMSS development is to

allow positioning of the suspended element through large angles in yaw (0z) up to 360 °. As

the suspended element is rotated, the equilibrium currents will change. Following the

approach detailed in the Appendix of reference 2, the equilibrium currents can be developed

as a function of yaw angle and initial torques and forces on the suspended element.

Assuming only yaw displacement, [T,,] becomes

s i][T.] =[0 sOz oCO_

(55)

Since B = [Tm]B, from equations (11) and (12)

T¢i] F(sO_B,- c0zByl]T |= vM_/ [(c0 Bx+s0 B,
(56)

Using the approach discussed earlier to obtain equation (17), T a becomes

T a = vM_cz((C20z - S20z)B(zy)z + c0_s0z(B(r:) z - B_xx)_)) (57)
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Simplifyingequation(57) resultsin

Ta = vM_c z(c20zB(xy)z + 2s20_ (B(rj) z - B(x_)z)) (58)

The forces, from equation (20) become

F
F_J L B_ j

(59)

In terms of yaw angle and coil currents, the torques and forces become

T a

Toy

Ta

Fa

Fcy

.Fa

= vM_

(seLK,j_cO=LK,j)

(cezLK,J-,-sO=LK,j)
I

l
(cOzLK_J+sOz[_J)

(co,LK_J-sOzLK_J)
LK=J

Io (60)

CONCLUDING REMARKS

This paper has developed a simplified analytical model of a six-degree-of-freedom large-

gap magnetic suspension system. The suspended element is a cylindrical permanent magnet

that is magnetized perpendicular to its axis of symmetry and the actuators are air-core

electromagnets mounted in a planar array. The analytical model is an open-loop

representation with electromagnet currents as inputs. The model should be useful in

analyses and simulations, in the development of control system approaches, and in

evaluations of overall system performance.
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